organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-Butyl-1-(2,3,4-tri-O-acetyl-β-L-fucopyranosyl)-1*H*-1,2,3-triazole

Abdul-Basit Alhassan, Peter Norris and Matthias Zeller*

Department of Chemistry, Youngstown State University, 1 University Plaza, Youngstown, OH 44555-3663, USA Correspondence e-mail: mzeller@ysu.edu

Received 15 July 2009; accepted 20 July 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.046; wR factor = 0.120; data-to-parameter ratio = 9.8.

The title compound, C₁₈H₂₇N₃O₇, was synthesized by Cu^Icatalysed coupling of an azide with an alkyne as part of a study into the synthesis of N-glycosyl-1,2,3-triazoles. The crystal structure confirms the selective formation of the β -conformer of the pyranose N-glycoside, thus confirming the retention of stereochemistry during heterocycle formation with the Nglycosyl triazole group occupying the equatorial position at the anomeric C atom. The structure exhibits two crystallographically independent molecules (A and B) with essentially identical conformations with a weighted r.m.s. deviation of only 0.09 Å. The molecules are arranged in layers with hydrophobic and more polar sections built from the butyl triazole units on the one hand and the more polar moieties dominated by the carbohydrate units on the other. Within the polar layers, intermolecular interactions are dominated by a three-dimensional network of weak C-H···O hydrogen bonds with the acetyl keto O atoms as the hydrogen-bond acceptors. The triazole units interact with each other via C-H...N hydrogen bonds which connect the molecules into two infinite chains of molecules made up of either A molecules or *B* molecules that stretch parallel to each other along [100]. Between the butyl groups no directional interactions are observed.

Related literature

For background information on *N*-glycosidic mimics of naturally occurring carbohydrates, see: Norris (2008); Temelkoff *et al.* (2006). For details of the synthesis of the carbohydrate starting material used, see: Zhang *et al.* (2007).

Experimental

Crystal data

 $\begin{array}{l} C_{18}H_{27}N_{3}O_{7} \\ M_{r} = 397.43 \\ \text{Triclinic, } P1 \\ a = 5.5173 \ (3) \ \text{\AA} \\ b = 7.7442 \ (4) \ \text{\AA} \\ c = 24.1013 \ (13) \ \text{\AA} \\ \alpha = 94.507 \ (1)^{\circ} \\ \beta = 96.151 \ (1)^{\circ} \end{array}$

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (SADABS in SAINT-Plus; Bruker, 2003) T_{min} = 0.867, T_{max} = 0.991

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.120$ S = 1.115041 reflections 515 parameters

$V = 1020.22 \text{ (9) } \text{Å}^{3}$ Z = 2Mo K\alpha radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 100 K $0.36 \times 0.35 \times 0.09 \text{ mm}$

 $\gamma = 91.227 \ (1)^{\circ}$

10512 measured reflections 5041 independent reflections 4839 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.020$

3 restra	aints
H-aton	n parameters constrained
$\Delta \rho_{\rm max}$	$= 0.42 \text{ e} \text{ Å}^{-3}$
$\Lambda \rho$ ·	$= -0.21 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C1B-H1B\cdots O3B^{i}$	1.00	2.53	3.362 (3)	141
$C2A - H2A \cdots O3A$	1.00	2.26	2.701 (3)	105
$C2B - H2B \cdots O3B$	1.00	2.26	2.698 (3)	105
$C3A - H3A \cdots O3A^{ii}$	1.00	2.32	3.214 (3)	149
$C3B - H3B \cdots O3B^{i}$	1.00	2.27	3.165 (3)	148
$C4A - H4A \cdots O5A$	1.00	2.56	3.046 (3)	110
$C4A - H4A \cdots O7A$	1.00	2.23	2.682 (3)	106
$C4B - H4B \cdots O5B$	1.00	2.57	3.067 (3)	110
$C4B - H4B \cdots O7B$	1.00	2.21	2.670 (3)	106
$C7A - H7A \cdot \cdot \cdot N3A^{ii}$	0.95	2.39	3.308 (4)	161
$C7B - H7B \cdot \cdot \cdot N3B^{i}$	0.95	2.40	3.313 (4)	161
$C14A - H14A \cdots O1A^{iii}$	0.98	2.47	3.377 (3)	154
$C14B - H14D \cdots O1B^{iii}$	0.98	2.35	3.261 (3)	155
$C16A - H16A \cdots O7B^{iii}$	0.98	2.41	3.295 (4)	150
$C16B - H16F \cdots O7A$	0.98	2.51	3.401 (4)	150

Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z; (iii) x, y - 1, z.

Data collection: *SMART* for WNT/2000 (Bruker, 2002); cell refinement: *SAINT-Plus* (Bruker, 2003); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL* and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXTL* and *publCIF* (Westrip, 2009).

The authors thank the National Institutes of Health (grant R15 AI053112–01) for funding this study. The diffractometer was funded by NSF grant 0087210, by Ohio Board of Regents grant CAP-491, and by YSU.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2257).

References

Bruker (2002). SMART for WNT/2000. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Norris, P. (2008). Curr. Top. Med. Chem. 8, 101-113.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Temelkoff, D. P., Zeller, M. & Norris, P. (2006). Carbohydr. Res. 341, 1081-
- 1090. Westrip, S. P. (2009). *publCIF*. In preparation.
- Zhang, J., Chen, H.-N., Chiang, F.-I., Takemoto, J. Y., Bensaci, M. & Chang, C.-W. T. (2007). J. Comb. Chem. 9, 17–19.

Acta Cryst. (2009). E65, o1992-o1993 [doi:10.1107/S1600536809028700]

4-Butyl-1-(2,3,4-tri-O-acetyl-β-L-fucopyranosyl)-1H-1,2,3-triazole

A.-B. Alhassan, P. Norris and M. Zeller

Comment

N-Glycosidic analogs of naturally occurring carbohydrates are receiving a growing amount of attention due to their potential in medicinal chemistry (Norris, 2008; Temelkoff *et al.*, 2006). As part of a study into the synthesis of *N*-glycosyl-1,2,3triazoles, the title compound was found to be the only 1,2,3-triazole product formed from the reaction of 2,3,4-tri-*O*-acetyl- β -L-fucopyranosyl azide (Zhang *et al.*, 2007) with 1-hexyne and catalytic CuSO₄/ascorbic acid (Fig. 1).

The structure exhibits two crystallographically independent molecules A and B (Fig. 2) with essentially identical conformations as can be seen in the overlay shown in Fig. 3. The weighted r.m.s. deviation of the two molecules is only 0.09 Å. Both molecules exhibit unexceptional chair conformations for the pyranose ring and straight all-*trans* chains for the butyl chains. The crystal structure reveals the β -configuration of the pyranose *N*-glycoside (Fig. 2). This confirms the retention of stereochemistry during heterocycle formation with the *N*-glycosyl triazole group occupying the equatorial position at the anomeric carbon atom. Also, the complete regioselectivity of the cycloaddition process is supported with only the 1,4–1*H*-1,2,3-triazole being formed as the ¹H NMR spectrum of the crude reaction mixture did not show any additional signals that may indicate the formation of the corresponding 1,5-isomer.

The molecules arrange in the solid state in layers with mainly hydrophobic sections built from the butyl triazole units on the one hand and the more polar moieties dominated by the carbohydrate units on the other. Within the polar layers intermolecular interactions are dominated by a three-dimensional network of weak C—H···O hydrogen bonds with the acetyl keto oxygen atoms as the H bond acceptors (Fig. 4, Table 1). The triazole units interact with each other *via* C—H···N hydrogen bonds that connect the molecules into two infinite chains made up of either A molecules or B molecules that stretch parallel to each other along the [1 0 0] direction (Figure 4, Table 1). In the hydrophobic layer dominated by the butyl groups no directional interactions are observed.

Experimental

The triazole was prepared from 2,3,4-tri-*O*-acetyl- β -*L*-fucosyl azide (0.4 g, 1.27 mmol), 1-hexyne (0.16 ml, 1.38 mmol), 1*M* CuSO₄ (0.3 ml, 0.3 mmol), 1*M* ascorbic acid (0.4 ml, 0.4 mmol) and 10 ml of 1:1 ethanol/H₂O as solvent. The mixture was heated to 345.5 K (70 °C) and allowed to stir vigorously until TLC showed the completion of the reaction. The reaction was monitored by TLC (1:1, hexane-ethyl acetate, $R_f = 0.41$). After cooling to room temperature, ice water was added to the mixture which led to the precipitation of the triazole product which was then isolated by filtration through a glass frit. Purification by flash column chromatography (1:1, hexane-ethyl acetate) and recrystallization with isopropanol gave the title compound as a white solid (0.42 g, 83.3%). Crystals suitable for data collection were grown by slow evaporation from isopropanol. ¹H NMR (CDCl₃): δ 0.91 (t, 3H, *J* = 7.32 Hz), 1.23 (d, 3H, *J* = 6.22 Hz), 1.35 (m, 2H, *J* = 7.32 Hz), 1.64 (m, 2H, *J* = 7.32 Hz), 1.85 (s, 3H, COCH₃), 1.98 (s, 3H, COCH₃), 2.22 (s, 3H, COCH₃), 2.70 (t, 2H, *J* = 7.32 Hz), 4.09 (q, 1H, *J* = 6.59 Hz), 5.21 (dd, 1H, *J* = 2.93, 10.25 Hz), 5.37 (d, 1H, *J* = 3.30 Hz), 5.50 (t, 1H, H-2, *J* = 9.89 Hz), 5.76 (d, 1H, H-1, *J* =

9.89 Hz), 7.54 (s, 1H, H-triazole); ¹³C NMR (CDCl₃): δ 15.08, 17.33, 21.55, 21.83, 21.96, 23.45, 26.56, 32.53, 69.01, 71.07, 72.45, 73.75, 87.32, 119.86, 150.02, 170.20, 170.90, 171.39; MS: m/z calculated: 397.18, m/z found (ESI): 420.2 (+Na).

Refinement

Treatment of hydrogen atoms: All hydrogen atoms were added in calculated positions with a C—H bond distance of 0.95 Å (triazole H), 0.98 Å (methyl) or 1.00 Å (others). They were refined with isotropic displacement parameters of 1.5 times (methyl) or 1.2 times (others) that of the equivalent isotropic displacement parameter of the adjacent carbon atom. Methyl hydrogen atoms were allowed to rotate to best fit the experimental electron density.

Friedel pairs were merged prior to refinement. The absolute structure was assigned based on the known stereochemistry of carbon atoms not being changed during the synthesis of the compound.

Figures

Fig. 1. Synthesis of the title compound.

Fig. 2. Thermal ellipsoid representation of both crystallographically independent molecules. Displacement ellipsoids are at the 50% level, hydrogen atoms are shown as spheres of arbitrary radii.

Fig. 3. Overlay of the A and B molecules.

Fig. 4. View of the packing arrangement. Blue dotted lines represent C—H…O and C—H…N interactions.

4-Butyl-1-(2,3,4-tri-O-acetyl-β-L-fucopyranosyl)-1H-1,2,3-triazole

Crystal data	
$C_{18}H_{27}N_3O_7$	Z = 2
$M_r = 397.43$	$F_{000} = 424$
Triclinic, P1	$D_{\rm x} = 1.294 {\rm ~Mg~m}^{-3}$
Hall symbol: P 1	Mo K α radiation, $\lambda = 0.71073$ Å
a = 5.5173 (3) Å	Cell parameters from 9354 reflections
b = 7.7442 (4) Å	$\theta = 2.6 - 30.5^{\circ}$
c = 24.1013 (13) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\alpha = 94.5070 \ (10)^{\circ}$	T = 100 K
$\beta = 96.1510 \ (10)^{\circ}$	Plate, colourless

$\gamma = 91.2270 \ (10)^{\circ}$ $V = 1020.22 \ (9) \ \text{\AA}^3$

Data collection

Bruker SMART APEX CCD diffractometer	5041 independent reflections
Radiation source: fine-focus sealed tube	4839 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.020$
T = 100 K	$\theta_{max} = 28.3^{\circ}$
ω scans	$\theta_{\min} = 0.9^{\circ}$
Absorption correction: multi-scan (SADABS in SAINT-Plus; Bruker, 2003)	$h = -7 \rightarrow 7$
$T_{\min} = 0.867, \ T_{\max} = 0.991$	$k = -10 \rightarrow 10$
10512 measured reflections	$l = -31 \rightarrow 32$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.046$	H-atom parameters constrained
$wR(F^2) = 0.120$	$w = 1/[\sigma^2(F_o^2) + (0.0771P)^2 + 0.17P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.11	$(\Delta/\sigma)_{\rm max} < 0.001$
5041 reflections	$\Delta \rho_{max} = 0.42 \text{ e} \text{ Å}^{-3}$
515 parameters	$\Delta \rho_{min} = -0.21 \text{ e } \text{\AA}^{-3}$
3 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $0.36 \times 0.35 \times 0.09 \text{ mm}$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1A	0.1284 (4)	0.5904 (3)	0.25737 (10)	0.0160 (4)
H1A	0.2899	0.5447	0.2490	0.019*

C2A	0.0093 (4)	0.4715 (3)	0.29447 (10)	0.0160 (4)
H2A	-0.1530	0.5159	0.3027	0.019*
C3A	0.1762 (4)	0.4617 (3)	0.34855 (10)	0.0172 (4)
H3A	0.3249	0.3967	0.3405	0.021*
C4A	0.2522 (4)	0.6418 (3)	0.37653 (10)	0.0178 (5)
H4A	0.3898	0.6301	0.4064	0.021*
C5A	0.3353 (5)	0.7604 (3)	0.33445 (11)	0.0201 (5)
H5A	0.4950	0.7206	0.3229	0.024*
C6A	0.3639 (6)	0.9487 (4)	0.35723 (13)	0.0282 (6)
H6A1	0.4299	1.0173	0.3295	0.042*
H6A2	0.4757	0.9583	0.3919	0.042*
H6A3	0.2045	0.9923	0.3650	0.042*
C7A	0.0505 (5)	0.6379 (3)	0.15536 (11)	0.0186 (5)
H7A	0.2127	0.6396	0.1455	0.022*
C8A	-0.1595 (4)	0.6638 (3)	0.12178 (11)	0.0189 (5)
C9A	-0.1947 (5)	0.7003 (4)	0.06140 (12)	0.0238 (5)
H9A1	-0.2156	0.8262	0.0590	0.029*
H9A2	-0.3463	0.6399	0.0434	0.029*
C10A	0.0155 (5)	0.6439 (4)	0.02915 (11)	0.0226 (5)
H10A	0.0396	0.5186	0.0323	0.027*
H10B	0.1665	0.7070	0.0463	0.027*
C11A	-0.0269(5)	0.6775 (5)	-0.03262(12)	0.0307 (6)
H11A	-0.1812	0.6180	-0.0494	0.037*
H11B	-0.0451	0.8034	-0.0357	0.037*
C12A	0.1782 (6)	0.6156 (5)	-0.06548 (13)	0.0351 (7)
H12A	0.3314	0.6749	-0.0494	0.053*
H12B	0 1425	0 6416	-0 1046	0.053*
H12C	0 1936	0 4903	-0.0637	0.053*
C13A	-0 2440 (4)	0 2243 (3)	0 26034 (11)	0.0192 (5)
C14A	-0.2384(5)	0.0438(3)	0.23312(12)	0.0248(5)
H14A	-0.1490	-0.0299	0.2590	0.037*
H14B	-0.1569	0.0458	0.1990	0.037*
H14C	-0.4056	-0.0026	0.2235	0.037*
C15A	0 1526 (5)	0.3080(3)	0.43018 (12)	0.0234(5)
C16A	-0.0247(6)	0.2000(5)	0.46177(14)	0.0251(5) 0.0367(7)
H16A	0.0645	0.1544	0.4906	0.055*
H16R	-0 1292	0.1373	0.4359	0.055*
H16C	-0.1252	0.3043	0.4795	0.055*
C17A	0.0802 (5)	0.7476 (3)	0.4795 0.45847 (11)	0.035
C18A	-0.1564(5)	0.7470(3)	0.43340(13)	0.0207(5)
H18A	-0.1241	0.7010 (4)	0.5236	0.0200(0)
H18R	-0.2447	0.7755	0.3230	0.043*
HISC	-0.2553	0.8492	0.4653	0.043*
N1A	-0.0240(4)	0.6093 (3)	0.4055	0.045
N2A	-0.2688(4)	0.6186 (3)	0.20303(9) 0.20427(10)	0.0100(4)
N3A	-0.3500(4)	0.6400 (3)	0.20727(10) 0.15312(10)	0.0204(4)
	0.3303 (4)	0.0477 (3)	0.13312(10) 0.28548(9)	0.0203(4) 0.0105(4)
024	-0.0188(2)	0.7570(2) 0.3011(2)	0.20040 (0)	0.0175(4)
02A	-0.4211(2)	0.3011(2) 0.2026(2)	0.20300 (0)	0.0101(3)
OJA	0.4211 (3)	0.2920 (3)	0.21311 (9)	0.0202 (4)

O4A	0.0358 (3)	0.3647 (2)	0.38316 (8)	0.0216 (4)
O5A	0.3664 (4)	0.3301 (3)	0.44336 (9)	0.0329 (5)
O6A	0.0444 (3)	0.7086 (2)	0.40218 (8)	0.0205 (4)
O7A	0.2785 (4)	0.7661 (4)	0.48414 (9)	0.0385 (6)
C1B	0.2703 (4)	0.9784 (3)	0.80834 (10)	0.0174 (5)
H1B	0.1076	0.9344	0.8168	0.021*
C2B	0.3807 (4)	0.8444 (3)	0.76952 (11)	0.0166 (4)
H2B	0.5439	0.8862	0.7608	0.020*
C3B	0.2060 (4)	0.8121 (3)	0.71631 (10)	0.0186 (5)
H3B	0.0553	0.7500	0.7248	0.022*
C4B	0.1364 (4)	0.9804 (3)	0.69039 (11)	0.0193 (5)
H4B	-0.0028	0.9557	0.6605	0.023*
C5B	0.0619 (5)	1.1164 (4)	0.73393 (11)	0.0212 (5)
H5B	-0.0975	1.0789	0.7460	0.025*
C6B	0.0375 (6)	1.2960 (4)	0.71358 (12)	0.0275 (6)
H6B1	-0.0147	1.3756	0.7434	0.041*
H6B2	-0.0838	1.2920	0.6806	0.041*
H6B3	0.1953	1.3367	0.7036	0.041*
C7B	0.3525 (5)	1.0728 (3)	0.91047 (11)	0.0195 (5)
H7B	0.1904	1.0772	0.9203	0.023*
C8B	0.5642 (4)	1.1177 (3)	0.94397 (11)	0.0187 (5)
C9B	0.6021 (5)	1.1841 (4)	1.00422 (12)	0.0244 (5)
H9B1	0.6318	1.3111	1.0067	0.029*
H9B2	0.7496	1.1320	1.0222	0.029*
C10B	0.3876 (5)	1.1448 (4)	1.03638 (11)	0.0232 (5)
H10C	0.2409	1.1995	1.0190	0.028*
H10D	0.3552	1.0180	1.0332	0.028*
C11B	0.4303 (6)	1.2089 (5)	1.09785 (12)	0.0309 (6)
H11C	0.4583	1.3361	1.1010	0.037*
H11D	0.5800	1.1568	1.1149	0.037*
C12B	0.2200 (6)	1.1658 (5)	1.13071 (13)	0.0351 (7)
H12D	0.0720	1.2198	1.1149	0.053*
H12E	0.2593	1.2100	1.1699	0.053*
H12F	0.1931	1.0399	1.1285	0.053*
C13B	0.6276 (5)	0.6187 (3)	0.80445 (11)	0.0192 (5)
C14B	0.6181 (5)	0.4532 (4)	0.83252 (13)	0.0264 (6)
H14D	0.5291	0.3635	0.8068	0.040*
H14E	0.5345	0.4719	0.8663	0.040*
H14F	0.7844	0.4160	0.8428	0.040*
C15B	0.1945 (6)	0.6211 (4)	0.63345 (12)	0.0272 (6)
C16B	0.3516 (7)	0.5229 (5)	0.59592 (14)	0.0402 (8)
H16D	0.2618	0.4193	0.5779	0.060*
H16E	0.4996	0.4886	0.6181	0.060*
H16F	0.3965	0.5967	0.5672	0.060*
C17B	0.3086 (5)	1.0620 (4)	0.60971 (11)	0.0218 (5)
C18B	0.5441 (5)	1.0822 (5)	0.58499 (13)	0.0306 (6)
H18D	0.5115	1.1205	0.5472	0.046*
H18E	0.6251	0.9709	0.5832	0.046*
H18F	0.6498	1.1686	0.6084	0.046*

N1B	0.4259 (4)	1.0209 (3)	0.86032 (9)	0.0166 (4)
N2B	0.6712 (4)	1.0341 (3)	0.86152 (10)	0.0202 (4)
N3B	0.7542 (4)	1.0919 (3)	0.91256 (9)	0.0201 (4)
O1B	0.2423 (3)	1.1344 (2)	0.78221 (8)	0.0195 (4)
O2B	0.4016 (3)	0.6857 (2)	0.79666 (8)	0.0187 (3)
O3B	0.8064 (3)	0.6837 (3)	0.78989 (10)	0.0285 (4)
O4B	0.3322 (4)	0.7019 (2)	0.67849 (8)	0.0228 (4)
O5B	-0.0221 (4)	0.6326 (3)	0.62559 (10)	0.0363 (5)
O6B	0.3468 (3)	1.0408 (2)	0.66523 (8)	0.0209 (4)
O7B	0.1098 (4)	1.0641 (4)	0.58456 (9)	0.0352 (5)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C1A	0.0121 (10)	0.0187 (11)	0.0174 (11)	0.0013 (8)	0.0022 (8)	0.0014 (9)
C2A	0.0137 (10)	0.0157 (10)	0.0185 (11)	0.0005 (8)	0.0032 (8)	-0.0015 (8)
C3A	0.0154 (11)	0.0187 (11)	0.0183 (11)	0.0008 (8)	0.0032 (8)	0.0040 (9)
C4A	0.0139 (11)	0.0202 (11)	0.0191 (11)	0.0011 (9)	0.0026 (8)	-0.0017 (9)
C5A	0.0167 (11)	0.0218 (12)	0.0215 (12)	-0.0022 (9)	0.0013 (9)	0.0007 (9)
C6A	0.0322 (15)	0.0227 (13)	0.0281 (14)	-0.0071 (11)	-0.0006 (11)	-0.0002 (10)
C7A	0.0155 (11)	0.0213 (11)	0.0195 (12)	0.0015 (9)	0.0042 (9)	0.0003 (9)
C8A	0.0134 (11)	0.0216 (11)	0.0213 (12)	0.0008 (9)	0.0035 (9)	-0.0022 (9)
C9A	0.0177 (12)	0.0311 (14)	0.0230 (13)	0.0057 (10)	0.0015 (9)	0.0051 (10)
C10A	0.0212 (12)	0.0263 (13)	0.0209 (12)	0.0020 (10)	0.0039 (9)	0.0031 (10)
C11A	0.0249 (14)	0.0474 (18)	0.0208 (13)	0.0034 (12)	0.0035 (10)	0.0067 (12)
C12A	0.0313 (16)	0.0507 (19)	0.0253 (15)	0.0038 (13)	0.0087 (12)	0.0065 (13)
C13A	0.0171 (11)	0.0213 (12)	0.0192 (12)	0.0014 (9)	0.0006 (9)	0.0023 (9)
C14A	0.0240 (13)	0.0202 (12)	0.0288 (14)	0.0010 (10)	0.0005 (10)	-0.0029 (10)
C15A	0.0291 (14)	0.0182 (11)	0.0231 (13)	0.0025 (10)	0.0035 (10)	0.0021 (9)
C16A	0.0382 (18)	0.0403 (17)	0.0343 (16)	-0.0012 (14)	0.0052 (13)	0.0192 (13)
C17A	0.0157 (11)	0.0221 (12)	0.0243 (12)	0.0011 (9)	0.0034 (9)	-0.0006 (9)
C18A	0.0159 (12)	0.0402 (16)	0.0297 (14)	0.0012 (11)	0.0062 (10)	-0.0018 (12)
N1A	0.0123 (9)	0.0177 (9)	0.0199 (10)	0.0007 (7)	0.0017 (7)	0.0010 (7)
N2A	0.0121 (9)	0.0221 (10)	0.0270 (11)	-0.0006 (8)	0.0027 (8)	0.0018 (8)
N3A	0.0148 (10)	0.0221 (10)	0.0243 (11)	-0.0001 (8)	0.0037 (8)	0.0019 (8)
O1A	0.0183 (8)	0.0172 (8)	0.0222 (9)	-0.0004 (6)	-0.0001 (7)	0.0001 (7)
O2A	0.0133 (8)	0.0174 (8)	0.0233 (9)	0.0017 (6)	0.0033 (6)	-0.0017 (7)
O3A	0.0172 (9)	0.0231 (9)	0.0385 (11)	-0.0029 (7)	0.0079 (8)	-0.0019 (8)
O4A	0.0183 (8)	0.0242 (9)	0.0230 (9)	-0.0012 (7)	0.0035 (7)	0.0049 (7)
O5A	0.0300 (11)	0.0354 (12)	0.0319 (11)	0.0004 (9)	-0.0069 (9)	0.0089 (9)
O6A	0.0144 (8)	0.0229 (9)	0.0238 (9)	0.0038 (7)	0.0023 (7)	-0.0020(7)
O7A	0.0173 (10)	0.0686 (17)	0.0267 (11)	0.0044 (10)	0.0018 (8)	-0.0144 (11)
C1B	0.0139 (10)	0.0202 (11)	0.0173 (11)	-0.0023 (9)	-0.0002 (8)	0.0009 (9)
C2B	0.0140 (10)	0.0161 (10)	0.0195 (11)	-0.0026 (8)	0.0013 (8)	0.0023 (8)
C3B	0.0180 (11)	0.0201 (11)	0.0171 (11)	-0.0015 (9)	0.0013 (8)	0.0005 (9)
C4B	0.0134 (11)	0.0241 (12)	0.0202 (12)	-0.0022 (9)	0.0008 (9)	0.0037 (9)
C5B	0.0164 (11)	0.0252 (12)	0.0219 (12)	0.0006 (9)	0.0003 (9)	0.0043 (9)
C6B	0.0311 (14)	0.0244 (13)	0.0266 (14)	0.0054 (11)	-0.0020 (11)	0.0046 (11)

C7B	0.0155 (11)	0.0209 (11)	0.0220 (12)	-0.0009 (9)	0.0032 (9)	0.0007 (9)
C8B	0.0144 (11)	0.0185 (11)	0.0232 (12)	-0.0022 (9)	0.0017 (9)	0.0033 (9)
C9B	0.0185 (12)	0.0321 (14)	0.0216 (13)	-0.0063 (10)	0.0013 (9)	-0.0007 (10)
C10B	0.0199 (12)	0.0279 (13)	0.0213 (12)	-0.0035 (10)	0.0029 (9)	-0.0011 (10)
C11B	0.0248 (14)	0.0444 (17)	0.0222 (14)	-0.0059 (12)	0.0040 (10)	-0.0046 (12)
C12B	0.0304 (16)	0.0494 (19)	0.0253 (14)	-0.0049 (14)	0.0091 (12)	-0.0043 (13)
C13B	0.0184 (12)	0.0193 (11)	0.0190 (12)	-0.0015 (9)	0.0016 (9)	-0.0029 (9)
C14B	0.0224 (13)	0.0248 (13)	0.0324 (15)	0.0004 (10)	0.0006 (10)	0.0071 (11)
C15B	0.0409 (17)	0.0186 (12)	0.0204 (13)	-0.0067 (11)	-0.0024 (11)	0.0012 (10)
C16B	0.058 (2)	0.0306 (15)	0.0298 (16)	-0.0025 (15)	0.0037 (14)	-0.0102 (12)
C17B	0.0167 (12)	0.0260 (13)	0.0228 (12)	0.0006 (9)	0.0043 (9)	0.0000 (10)
C18B	0.0187 (13)	0.0454 (17)	0.0281 (14)	-0.0006 (11)	0.0073 (11)	-0.0006 (12)
N1B	0.0121 (9)	0.0196 (10)	0.0179 (10)	-0.0014 (7)	0.0018 (7)	0.0005 (8)
N2B	0.0117 (9)	0.0252 (11)	0.0233 (11)	-0.0001 (8)	0.0014 (7)	0.0003 (8)
N3B	0.0146 (9)	0.0244 (11)	0.0212 (10)	0.0009 (8)	0.0023 (8)	0.0008 (8)
O1B	0.0187 (8)	0.0184 (8)	0.0207 (9)	-0.0015 (6)	-0.0008 (7)	0.0015 (7)
O2B	0.0153 (8)	0.0194 (8)	0.0217 (9)	-0.0017 (6)	0.0017 (6)	0.0049 (7)
O3B	0.0175 (9)	0.0261 (10)	0.0432 (12)	0.0005 (7)	0.0081 (8)	0.0059 (9)
O4B	0.0266 (10)	0.0210 (9)	0.0200 (9)	-0.0018 (7)	0.0025 (7)	-0.0028 (7)
O5B	0.0365 (13)	0.0351 (12)	0.0329 (12)	-0.0066 (9)	-0.0092 (9)	-0.0049 (9)
O6B	0.0149 (8)	0.0252 (9)	0.0225 (9)	-0.0050 (7)	0.0006 (7)	0.0054 (7)
O7B	0.0190 (10)	0.0659 (16)	0.0212 (10)	-0.0011 (10)	0.0010 (7)	0.0101 (10)

Geometric parameters (Å, °)

C1A—O1A	1.412 (3)	C1B—O1B	1.409 (3)
C1A—N1A	1.446 (3)	C1B—N1B	1.452 (3)
C1A—C2A	1.519 (3)	C1B—C2B	1.523 (3)
C1A—H1A	1.0000	C1B—H1B	1.0000
C2A—O2A	1.437 (3)	C2B—O2B	1.438 (3)
С2А—С3А	1.521 (3)	C2B—C3B	1.520 (3)
C2A—H2A	1.0000	C2B—H2B	1.0000
C3A—O4A	1.440 (3)	C3B—O4B	1.443 (3)
C3A—C4A	1.530 (3)	C3B—C4B	1.528 (3)
СЗА—НЗА	1.0000	СЗВ—НЗВ	1.0000
C4A—O6A	1.446 (3)	C4B—O6B	1.451 (3)
C4A—C5A	1.520 (4)	C4B—C5B	1.522 (4)
C4A—H4A	1.0000	C4B—H4B	1.0000
C5A—O1A	1.440 (3)	C5B—O1B	1.444 (3)
C5A—C6A	1.516 (4)	C5B—C6B	1.515 (4)
С5А—Н5А	1.0000	C5B—H5B	1.0000
C6A—H6A1	0.9800	C6B—H6B1	0.9800
C6A—H6A2	0.9800	C6B—H6B2	0.9800
С6А—Н6А3	0.9800	C6B—H6B3	0.9800
C7A—N1A	1.354 (3)	C7B—N1B	1.350 (3)
C7A—C8A	1.369 (3)	C7B—C8B	1.369 (3)
С7А—Н7А	0.9500	С7В—Н7В	0.9500
C8A—N3A	1.369 (3)	C8B—N3B	1.367 (3)
C8A—C9A	1.497 (4)	C8B—C9B	1.493 (4)

C9A—C10A	1.517 (4)	C9B—C10B	1.520 (4)
С9А—Н9А1	0.9900	C9B—H9B1	0.9900
С9А—Н9А2	0.9900	С9В—Н9В2	0.9900
C10A—C11A	1.526 (4)	C10B—C11B	1.517 (4)
C10A—H10A	0.9900	C10B—H10C	0.9900
C10A—H10B	0.9900	C10B—H10D	0.9900
C11A—C12A	1.514 (4)	C11B—C12B	1.519 (4)
C11A—H11A	0.9900	C11B—H11C	0.9900
C11A—H11B	0.9900	C11B—H11D	0.9900
C12A—H12A	0.9800	C12B—H12D	0.9800
C12A—H12B	0.9800	C12B—H12E	0.9800
C12A—H12C	0.9800	C12B—H12F	0.9800
C13A—O3A	1.200 (3)	C13B—O3B	1.196 (3)
C13A—O2A	1.355 (3)	C13B—O2B	1.361 (3)
C13A—C14A	1.500 (4)	C13B—C14B	1.498 (4)
C14A—H14A	0.9800	C14B—H14D	0.9800
C14A—H14B	0.9800	C14B—H14E	0.9800
C14A—H14C	0.9800	C14B—H14F	0.9800
C15A—O5A	1.193 (4)	C15B—O5B	1.196 (4)
C15A—O4A	1.351 (3)	C15B—O4B	1.358 (3)
C15A—C16A	1.495 (4)	C15B—C16B	1.495 (5)
C16A—H16A	0.9800	C16B—H16D	0.9800
C16A—H16B	0.9800	С16В—Н16Е	0.9800
C16A—H16C	0.9800	C16B—H16F	0.9800
C17A—O7A	1.198 (3)	C17B—O7B	1.196 (3)
C17A—O6A	1.359 (3)	C17B—O6B	1.355 (3)
C17A—C18A	1.497 (4)	C17B—C18B	1.496 (4)
C18A—H18A	0.9800	C18B—H18D	0.9800
C18A—H18B	0.9800	C18B—H18E	0.9800
C18A—H18C	0.9800	C18B—H18F	0.9800
N1A—N2A	1.351 (3)	N1B—N2B	1.352 (3)
N2A—N3A	1.310 (3)	N2B—N3B	1.307 (3)
O1A—C1A—N1A	106.41 (19)	O1B—C1B—N1B	106.14 (19)
O1A—C1A—C2A	108.84 (19)	O1B—C1B—C2B	109.43 (19)
N1A—C1A—C2A	111.89 (19)	N1B—C1B—C2B	112.5 (2)
O1A—C1A—H1A	109.9	O1B—C1B—H1B	109.6
N1A—C1A—H1A	109.9	N1B—C1B—H1B	109.6
C2A—C1A—H1A	109.9	C2B—C1B—H1B	109.6
O2A—C2A—C1A	108.36 (19)	O2B—C2B—C3B	108.53 (19)
O2A—C2A—C3A	108.51 (19)	O2B—C2B—C1B	108.20 (19)
C1A—C2A—C3A	108.96 (19)	C3B—C2B—C1B	108.09 (19)
O2A—C2A—H2A	110.3	O2B—C2B—H2B	110.6
C1A—C2A—H2A	110.3	C3B—C2B—H2B	110.6
C3A—C2A—H2A	110.3	C1B—C2B—H2B	110.6
O4A—C3A—C2A	104.62 (19)	O4B—C3B—C2B	105.76 (19)
O4A—C3A—C4A	111.7 (2)	O4B—C3B—C4B	110.6 (2)
C2A—C3A—C4A	111.91 (19)	C2B—C3B—C4B	112.0 (2)
О4А—С3А—НЗА	109.5	O4B—C3B—H3B	109.5
С2А—С3А—НЗА	109.5	C2B—C3B—H3B	109.5

С4А—С3А—НЗА	109.5	C4B—C3B—H3B	109.5
O6A—C4A—C5A	111.8 (2)	O6B—C4B—C5B	110.9 (2)
O6A—C4A—C3A	107.00 (19)	O6B—C4B—C3B	107.1 (2)
C5A—C4A—C3A	111.2 (2)	C5B—C4B—C3B	111.6 (2)
O6A—C4A—H4A	108.9	O6B—C4B—H4B	109.1
С5А—С4А—Н4А	108.9	C5B—C4B—H4B	109.1
C3A—C4A—H4A	108.9	C3B—C4B—H4B	109.1
O1A—C5A—C6A	105.6 (2)	O1B—C5B—C6B	105.7 (2)
O1A—C5A—C4A	111.2 (2)	O1B—C5B—C4B	110.5 (2)
C6A—C5A—C4A	113.1 (2)	C6B—C5B—C4B	114.1 (2)
O1A—C5A—H5A	108.9	O1B—C5B—H5B	108.8
С6А—С5А—Н5А	108.9	C6B—C5B—H5B	108.8
C4A—C5A—H5A	108.9	C4B—C5B—H5B	108.8
C5A - C6A - H6A1	109.5	C5B—C6B—H6B1	109.5
C5A - C6A - H6A2	109.5	C5B—C6B—H6B2	109.5
H6A1 - C6A - H6A2	109.5	H6B1 - C6B - H6B2	109.5
C5A - C6A - H6A3	109.5	C5B-C6B-H6B3	109.5
H6A1 - C6A - H6A3	109.5	H6B1 - C6B - H6B3	109.5
H6A2 - C6A - H6A3	109.5	H6B2 - C6B - H6B3	109.5
N1A - C7A - C8A	109.5 104 7 (2)	N1B_C7B_C8B	104.4(2)
N1A - C7A - H7A	104.7 (2)	N1B-C7B-H7B	107.4 (2)
C8A - C7A - H7A	127.6	C8B-C7B-H7B	127.0
C7A - C8A - N3A	127.0 107.9 (2)	$N3B = C^8B = C^7B$	127.0 108.0(2)
C7A - C8A - C9A	107.9(2) 129.8(2)	N3B - C8B - C9B	100.0(2) 122.2(2)
$N_{A} C_{A} C_{A} C_{A}$	129.8(2) 122.3(2)	C7B $C8B$ $C0B$	122.2(2) 120.8(2)
$C_{A} C_{A} C_{A} C_{A} C_{A}$	122.5(2)	$C^{\text{RB}} = C^{\text{RB}} = C^{\text{RB}}$	129.0(2) 113.5(2)
$C_{0A} = C_{0A} = C_{10A}$	102.0	CP C C P L	108.0
$C_{0A} = C_{0A} = H_{0A} I$	108.9	$C_{0}D_{0} = C_{0}D_{0} = H_{0}D_{1}$	100.9
$C_{10A} - C_{9A} - H_{9A1}$	108.9	CP = CP = HP2	108.9
$C_{0A} = C_{0A} = H_{0A2}$	108.9	$C_{0}D = C_{0}D = H_{0}D_{2}$	108.9
C10A - C9A - H9A2	108.9	C10B—C9B—H9B2	108.9
H9A1 - C9A - H9A2	107.7	H9B1 - C9B - H9B2	107.7
C9A—C10A—C11A	112.7 (2)	CIIB—CI0B—C9B	113.1 (2)
C9A—C10A—H10A	109.0	CIIB—CI0B—HI0C	108.9
CIIA—CIOA—HIOA	109.0	C9B—C10B—H10C	108.9
C9A—C10A—H10B	109.0	CIIB—CI0B—HI0D	108.9
CIIA—CI0A—HI0B	109.0	C9B—C10B—H10D	108.9
HI0A—CI0A—HI0B	107.8	HI0C—CI0B—HI0D	107.8
C12A—C11A—C10A	113.0 (2)	C10B—C11B—C12B	113.6 (3)
C12A—C11A—H11A	109.0	C10B—C11B—H11C	108.9
C10A—C11A—H11A	109.0	C12B—C11B—H11C	108.9
C12A—C11A—H11B	109.0	C10B—C11B—H11D	108.9
C10A—C11A—H11B	109.0	C12B—C11B—H11D	108.9
H11A—C11A—H11B	107.8	H11C—C11B—H11D	107.7
C11A—C12A—H12A	109.5	C11B—C12B—H12D	109.5
C11A—C12A—H12B	109.5	C11B—C12B—H12E	109.5
H12A—C12A—H12B	109.5	H12D—C12B—H12E	109.5
C11A—C12A—H12C	109.5	C11B—C12B—H12F	109.5
H12A—C12A—H12C	109.5	H12D—C12B—H12F	109.5
H12B-C12A-H12C	109.5	H12E—C12B—H12F	109.5

O3A—C13A—O2A	124.0 (2)	O3B—C13B—O2B	123.8 (2)
O3A—C13A—C14A	125.5 (2)	O3B-C13B-C14B	125.6 (2)
O2A—C13A—C14A	110.5 (2)	O2B-C13B-C14B	110.6 (2)
C13A—C14A—H14A	109.5	C13B—C14B—H14D	109.5
C13A—C14A—H14B	109.5	C13B—C14B—H14E	109.5
H14A—C14A—H14B	109.5	H14D—C14B—H14E	109.5
C13A—C14A—H14C	109.5	C13B—C14B—H14F	109.5
H14A—C14A—H14C	109.5	H14D—C14B—H14F	109.5
H14B—C14A—H14C	109.5	H14E—C14B—H14F	109.5
O5A—C15A—O4A	123.3 (3)	O5B—C15B—O4B	123.1 (3)
O5A—C15A—C16A	126.7 (3)	O5B-C15B-C16B	126.2 (3)
O4A—C15A—C16A	110.0 (2)	O4B-C15B-C16B	110.7 (3)
C15A—C16A—H16A	109.5	C15B—C16B—H16D	109.5
C15A—C16A—H16B	109.5	C15B—C16B—H16E	109.5
H16A—C16A—H16B	109.5	H16D—C16B—H16E	109.5
C15A—C16A—H16C	109.5	C15B—C16B—H16F	109.5
H16A—C16A—H16C	109.5	H16D—C16B—H16F	109.5
H16B—C16A—H16C	109.5	H16E—C16B—H16F	109.5
O7A—C17A—O6A	123.1 (2)	O7B—C17B—O6B	123.2 (2)
O7A—C17A—C18A	125.3 (3)	O7B—C17B—C18B	125.3 (3)
O6A—C17A—C18A	111.6 (2)	O6B-C17B-C18B	111.5 (2)
C17A—C18A—H18A	109.5	C17B—C18B—H18D	109.5
C17A—C18A—H18B	109.5	C17B—C18B—H18E	109.5
H18A—C18A—H18B	109.5	H18D—C18B—H18E	109.5
C17A—C18A—H18C	109.5	C17B—C18B—H18F	109.5
H18A—C18A—H18C	109.5	H18D—C18B—H18F	109.5
H18B—C18A—H18C	109.5	H18E—C18B—H18F	109.5
N2A—N1A—C7A	111.1 (2)	C7B—N1B—N2B	111.4 (2)
N2A—N1A—C1A	121.4 (2)	C7B—N1B—C1B	126.5 (2)
C7A—N1A—C1A	127.1 (2)	N2B—N1B—C1B	121.5 (2)
N3A—N2A—N1A	106.6 (2)	N3B—N2B—N1B	106.3 (2)
N2A—N3A—C8A	109.6 (2)	N2B—N3B—C8B	109.8 (2)
C1A—O1A—C5A	111.88 (18)	C1B—O1B—C5B	111.96 (19)
C13A—O2A—C2A	117.27 (19)	C13B—O2B—C2B	117.18 (19)
C15A—O4A—C3A	117.9 (2)	C15B—O4B—C3B	116.7 (2)
C17A—O6A—C4A	115.87 (19)	C17B—O6B—C4B	115.64 (19)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C1B—H1B···O3B ⁱ	1.00	2.53	3.362 (3)	141
С2А—Н2А…ОЗА	1.00	2.26	2.701 (3)	105
C2B—H2B···O3B	1.00	2.26	2.698 (3)	105
C3A—H3A···O3A ⁱⁱ	1.00	2.32	3.214 (3)	149
C3B—H3B···O3B ⁱ	1.00	2.27	3.165 (3)	148
C4A—H4A····O5A	1.00	2.56	3.046 (3)	110
C4A—H4A···O7A	1.00	2.23	2.682 (3)	106
C4B—H4B···O5B	1.00	2.57	3.067 (3)	110

C4B—H4B…O7B	1.00	2.21	2.670 (3)	106	
C7A—H7A···N3A ⁱⁱ	0.95	2.39	3.308 (4)	161	
C7B—H7B···N3B ⁱ	0.95	2.40	3.313 (4)	161	
C14A—H14A…O1A ⁱⁱⁱ	0.98	2.47	3.377 (3)	154	
C14B—H14D···O1B ⁱⁱⁱ	0.98	2.35	3.261 (3)	155	
C16A—H16A····O7B ⁱⁱⁱ	0.98	2.41	3.295 (4)	150	
C16B—H16F···O7A	0.98	2.51	3.401 (4)	150	
Symmetry codes: (i) <i>x</i> -1, <i>y</i> , <i>z</i> ; (ii) <i>x</i> +1, <i>y</i> , <i>z</i> ; (iii) <i>x</i> , <i>y</i> -1, <i>z</i> .					

Fig. 1

Fig. 4